Analys av baskemikalier

Storage tanks on a chemical production plant

On this page, find information on analytical solutions and techniques for the following parameters and processes:

Analysis in accordance with international standards


The chemical industry is highly regulated by a vast body of national and international standards.

We provide the instruments and the know-how that allow you to comply with these standards.

> Find out how you can meet regulatory requirements with Metrohm solutions

Impurities in sulfuric acid

Sulfuric acid is the most-produced chemical in the world. In fact, it is so important that, together with chlorine, it is sometimes used as an indicator of a country’s economic development. Historically named oil of vitriol, it has been known for a long time.

A large portion of the sulfuric acid produced is used in agriculture as a fertilizer. However, the list of uses for sulfuric acid is very extensive, including but by no means limited to:
  • The production of cleaning agents
  • Battery production (as an electrolyte)
  • The pharmaceutical industry
  • The chemical industry
  • The production of resins, paints, inks, dyes, and polymers
For most of these applications, the sulfuric acid must be of sufficient purity. Metrohm offers a series of techniques and applications to determine impurities. Read more below.

Föroreningar av övergångsmetaller

Övergångsmetaller kan enkelt och noggrant bestämmas i svavelsyra med voltametri. För ändamålet används den robusta elektroden Multi-Mode pro som tillsammans med ett voltammetri-systemkan beräkna och bestämma: 

  • Krom (med DTPA) med användning av adsorptiv strippvoltametri
  • Molybden genom polarografi i salpetersyra
  • Nickel och kobolt med hjälp av adsorptiv strippvoltametri med dimetylglyoxim (DMG) som komplexbildare
  • Järn genom adsorptiv strippvoltametri med 1-nitroso-2-naftol (1N2N) såsom komplexbildande medel

> Lär mer om voltammetri

> Lär mer om Multi-Mode Electrode pro

Övergångsmetallföroreningar kan enkelt och noggrant bestämmas i svavelsyra medvoltametri. Det är lätt att använda, lätt underhåll och robust Multi-Mode elektrod proanvänds i kombination med voltametri systemet tillåter dig att avgöra:
Övergångsmetallföroreningar kan enkelt och noggrant bestämmas i svavelsyra medvoltametri. Det är lätt att använda, lätt underhåll och robust Multi-Mode elektrod proanvänds i kombination med voltametri systemet tillåter dig att avgöra:


Fluoride, chloride, and nitrate determination with ion chromatography

Ion chromatography is capable of determining fluoride, chloride, and nitrate in concentrated sulfuric acid (between 96 and 98% concentration). The method applied is conductivity detection after sequential suppression.

> Learn more about ion chromatography


Water determination in basic chemicals – solids, liquids, and gases

När det gäller vattenbestämningar i kemikalier, är Karl Fischer titrering förstahandsvalet. I princip kan vatten bestämmas i nästan alla kemikalier, oberoende av om de är fasta, flytande eller gasformiga.

Här fokuserar vi på vattenbestämningar i salter, vätskor och gaser, i synnerhet fokuserar vi på nedbrytningsprodukterna. Det är en oerhörd mängd kemikalier som går att bestämma vatteninnehållet med Karl Fischer-metoden, varför det av naturliga skäl blir omöjligt att täcka in alla varianter här. Om du vill veta mer – ladda ner vår omfångsrika Karl Fischer monografi.

> Lär mer om vattenbestämning i fasta prover

> Lär mer om vattenbestämning i vätskor

> Lär mer om vattenbestämning i gaser


Analysis in the chlor-alkali process

Chlorine ranks no. 7 on the list of the most commonly produced chemical substances. It is the basis for the production of numerous intermediate substances, which, in turn, are important feedstock materials in the petroleum, aluminum, paper and pulp, or pharmaceutical industries. For instance, chlorine is used in the production of a staggering 80% of drugs.

By far the largest part – about 95% – of the chlorine produced globally is obtained via the chlor-alkali process. In this process, chlorine and caustic soda are produced via electrolysis of sodium chloride brine. Caustic soda is another crucial basic chemical which is used in many chemical processes. Three electrolysis methods are applied for the chlor-alkali process, using either a diaphragm or a mercury or membrane cell.

For the process to be as efficient as possible, the brine has to be free of impurities. This makes chemical analysis necessary.

Read below what we have to offer for analyzing sodium chloride brine.

Ions in brine and alkali hydroxides with ion chromatography

Ion chromatography is ideally suited for determining cations (lithium, sodium, ammonium, potassium, calcium, magnesium, and strontium) and anions (chlorate and sulfate) in sodium chloride brine and alkali hydroxides. The detection method applied is conductivity detection.

> Learn more about ion chromatography


Titrering: En metod för åtskilliga parametrar

Titrering är en mycket mångsidig metod som möjliggör en mängd analyser. Metrohm har utvecklat applikationer för potentiometriska, fotometriska och termometriska titreringar av analyter i saltlake, t ex natrium, halogenider, sulfat, eller kalcium.

> Lär mer om potentiometrisk titrering

> Lär mer om termometrisk titrering

> Lär mer om fotometrisk titrering


Iodide in brine with voltammetry

In chlorine production, the most commonly applied electrolysis technique is the membrane process. This process requires high-purity brine in order to run efficiently. One of the main impurities that need to be monitored is iodide. The reason is that iodide readily oxidizes at the anode in the electrolysis cell. The resulting oxidation products precipitate inside the ion-exchange membrane and thus reduce the membrane's service life.

Voltammetry is predestined for iodide determination in brine. The method is straightforward and inexpensive and yields highly precise results.

> Learn more about voltammetry


Process solutions for saturated brines

Urea: The birth of modern organic chemistry

To chemists, urea is a special substance. It was the first organic compound produced from the inorganic materials ammonium hydroxide and lead cyanate. The synthesis of urea put an end to the then popular idea of vitalism, according to which only living organisms – by virtue of the so-called vital force – were capable of producing organic compounds. This synthesis, discovered by Friedrich Wöhler in 1828, was the birth of organic chemistry.

Friedrich Wöhler, discoverer of urea synthesis

With global production in excess of 150 million tons per year, urea belongs to the world’s top 10 organic compounds produced. The bulk of this is used as a nitrogen fertilizer in agriculture, where it plays a key role in producing food for the world’s growing population.

However, urea is also used in a vast number of other industries, e.g.:

  • In dermatological products in the cosmetics and pharmaceutical industries.
  • As an additive that reduces pollutants in exhaust gases in the automotive industry (diesel exhaust fluid, DEF, or AdBlue).
  • As a raw material in the production of melamine and urea-formaldehyde resins in the polymer industry.

Determining urea

Urea can be determined accurately by titration with thermometric detection. In this application, urea is dissolved in glacial acetic acid and titrated with trifluoromethanesulfonic acid using isobutyl vinyl ether as a thermometric endpoint indicator. This method can also be fully automated.

> Learn more about thermometric titration

> Learn more about automation


Determining impurities in urea

Analytical techniques are required to determine the purity of urea. Ion chromatography is an excellent technique for impurity analysis. Using anion chromatography with chemical suppression and conductivity detection, you can analyze traces of impurities reliably and accurately, e.g., chloride, cyanate, nitrate, and sulfate.

In addition, in urea-based fertilizers, ion chromatography can determine residual ammonium and guanidinium.

> Learn more about Metrohm ion chromatography



Evonik Goldschmidt GmbH

"I have been working for 24 years with Metrohm and they have never ever let me down."

Christian Goetz, deputy manager of "Silicons" QC laboratory at Evonik Goldschmidt GmbH


"We have chosen Metrohm because these systems are rugged, versatile, and easy to operate."

Daniel Matuschka, QC lab technician, Sigma-Aldrich, Steinheim (Germany)

Bernd Kraft GmbH

"We decided to go with Metrohm due to the exceptional application support we get, the robust suppressor and the modular design of the system."

Dieter Bossmann, Laboratory Manager, Bernd Kraft, Germany